———— ГИДРОФИЗИЧЕСКИЕ ПРОЦЕССЫ ———

УДК 551.465.153(282.256.341)

ИЗМЕНЧИВОСТЬ ПОДЛЕДНЫХ ТЕЧЕНИЙ В ЮЖНОМ БАЙКАЛЕ ПО ДАННЫМ 2012–2016 гг.¹

© 2017 г. А. А. Жданов^{1, *}, Р. Ю. Гнатовский¹, Н. Г. Гранин¹, В. В. Блинов¹, И. А. Асламов¹, В. В. Козлов²

¹Лимнологический институт СО РАН 664033 Иркутск, ул. Улан-Баторская, 3 ²Институт динамики систем и теории управления СО РАН 664033 Иркутск, ул. Лермонтова, 134 *E-mail: listandy@mail.ru Поступила в редакцию 22.08.2016 г.

Получены новые данные о течениях подо льдом в оз. Байкал с использованием высокоточного оборудования. На основе этих данных проведен анализ временной и пространственной изменчивости течений подо льдом озера, рассчитаны коэффициенты горизонтального турбулентного обмена и скорости диссипации турбулентной энергии, выполнена спектральная оценка полученных результатов. Проведено сравнение оценок структуры подледного пограничного слоя вблизи ангарской полыньи и в отдалении от нее (до 5 км).

Ключевые слова: скорость течения, коэффициент турбулентного обмена, скорость диссипации турбулентной энергии, подледный пограничный слой.

DOI: 10.7868/S032105961703018X

введение

Генерация течений происходит под действием разнообразных процессов, при этом течения характеризуются широким спектром пространственных и временны́х масштабов. Течения оказывают значительное влияние на нарастание и разрушение ледового покрова. В местах усиления течений (в прол. Малое Море, на выходе из Посольского Сора, а также вблизи м. Кадильного и других крупных мысов) отмечается раннее разрушение ледового покрова [21].

Причина раннего разрушения ледового покрова — увеличение теплового потока при усилении вертикального обмена в подледном слое воды [3, 26]. Одна из причин усиления вертикального обмена — повышенные скорости течений. Именно этим объясняется появление кольцевых структур на поверхности ледового покрова, которые наблюдаются в апреле перед разрушением ледового покрова [8, 11].

Расход р. Ангары определяется уровнем воды в оз. Байкал и режимом работы Иркутской ГЭС. На Байкале в последние годы наблюдается пониженный уровень воды в зимне-весенний период (ниже минимально допустимого, по постановлению правительства № 234 (456–457 м Тихоокеанской системы)). Экологические проблемы, связанные с падением уровня воды в Байкале ниже отметки минимального уровня, привели к необходимости следующих оценок:

изменчивости температурного режима и подледных течений в зал. Лиственничном (из которого берет свое начало р. Ангара);

структуры пограничного слоя на нижней поверхности льда в подледных течениях на оз. Байкал вблизи истока р. Ангары;

условий формирования пограничного слоя, которые определяют особенности распределения потоков тепла (теплообмена) и потоков (диффузии) примеси в зал. Лиственичном.

МЕХАНИЗМЫ ГЕНЕРАЦИИ ПОДЛЕДНЫХ ТЕЧЕНИЙ. ИСТОРИЯ НАТУРНЫХ ИЗМЕРЕНИЙ ПОДЛЕДНЫХ ТЕЧЕНИЙ НА 03. БАЙКАЛ

Для подледного периода в качестве основных механизмов генерации течений в деятельном слое можно выделить градиенты поля атмосферного давления, неравномерность радиационного прогрева вод подо льдом озера и влияние приливных сил.

Для навигационного периода большое значение имеют инерционные течения. С началом ле-

¹ Работа выполнена при финансовой поддержке РФФИ (проект № 15-55-12378) и НИР (тема № 0345-2014-0007).

Рис. 1. Схема станций: 1 – станции на разрезах, 2 – базовая станция (BS) в 2012 г., 3 – полуразрез от BS на ЮЗ.

достава вклад инерционной составляющей в общее течение постепенно падает. Характер затухания предледоставной циркуляции подо льдом изучен слабо. Определенный вклад в общее движение водных масс подо льдом Байкала вносят и течения, обусловленные поверхностными продольными сейшами, и сток рек.

Натурные измерения подледных течений в оз. Байкал, несмотря на свою 50-летнюю историю от начала первых измерений, до сих пор крайне редки. Почти все они проведены в Южном Байкале (ЮБ) с недостаточным охватом течений как в пространстве, так и во времени, часто при слишком большой для зимних течений пороговой скоростью V₀ измерительных приборов. После пионерских подробных исследований зимних течений в 1960-х гг. В.М. Сокольниковым с помощью модернизированных морских вертушек $(V_0 = 1 - 1.5 \text{ см/с})$ вблизи истока Ангары в связи со строительством Иркутской ГЭС и разработки схемы зимних течений верхнего слоя ЮБ [20, 22] можно отметить работы В.И. Верболова [6] и М.М. Айнбунда [1], измерявших течения с помощью букво-печатающей вертушки Алексеева (БПВ-2) в 1960-х, 1970-х гг. БПВ-2 имеет большой порог чувствительности (2-3 см/c), а зимние течения отличаются малыми скоростями, поэтому, несмотря на большой объем полученных данных, скорости течений, превышающие пороговые значения, отмечались редко.

Дополнительная информация по этому вопросу получена в 1984—2003 гг. при работах в ЮБ [10, 13, 14, 15]. Автономными цифровыми измерителями температуры и течений (АЦИТТ; $V_0 = 2 \text{ см/с}$) проведены длительные серии непрерывных измерений скоростей течений со льда озера, в основном в слое 0—100 м (рис. 1), а также круглогодичные измерения на прибрежном шельфе. Зимой 1996 и 1997 гг. были применены более чувствительные приборы ($V_0 = 0.1 \text{ см/c}$) – электромагнитный измеритель при работах в верхних слоях воды и доплеровский – при непрерывной регистрации течений в центре южной котловины (глубина 1386 м), в 120 м (1996 г.) и в 4 м (1997 г.) от дна [28]. В 2001–2003 гг. в южной котловине озера для этих целей использовался измеритель течений AANDERA ($V_0 = 2 \text{ см/c}$). Полученные материалы дали возможность впервые оценить энергетические спектры подледных течений, а также проследить изменчивость придонных течений на протяжении всего ледового периода [13].

В верхнем слое водной массы отмечено спорадическое увеличение скоростей течений выше пороговых значений в слоях небольшой толщины (20–30 м) на разных глубинах до 100 м. Увеличение скоростей течений происходит и в придонном стометровом слое, они сопоставима со скоростью поверхностных подледных течений. На других глубинах скорости течений превышали пороговые значения в единичных случаях.

ПРИБОРЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Для измерения течений использовались: гидроакустический доплеровский 3-D-профилограф "ADP Poseydon" фирмы "SonTek" (ADP) с диапазоном скорости ± 10 м/с, разрешением 0.1 см/с, точностью измерений ± 0.5 см/с, диапазоном глубин измерения 70 м, максимальной глубиной погружения 600 м; а также электромагнитный 2-Dизмеритель течений "INFINITY-EM" ("JFE Advantech Co., Ltd.") с диапазоном измерения скоростей ± 5 м/с, разрешением 0.02 см/с, точностью измерений ± 1 см/с, максимальной глубиной погружения 1000 м.

Работы проводились в экспедициях в январеапреле 2012–2016 гг. со льда оз. Байкал. Необходимое условие для измерения течений акустическим методом с использованием доплеровского эффекта – наличие в воде взвешенного вещества, включая биологические организмы. Подледный период характеризуется низкими концентрациями взвешенного вещества [27]. С учетом этого фактора проведен подбор оптимальных настроек ADP и способов его размещения в водной толще. Основные регулируемые параметры измерителя следующие: вертикальный размер ячейки осреднения, количество ячеек, время осреднения. Установлены оптимальные для подледных условий значения этих параметров: вертикальный размер ячейки – 2 м, количество ячеек – 30, время осреднения — 3 мин. Профилограф был размещен на трех растяжках с направлением оси Х прибора по истинному меридиану на север. В этом случае влияние магнитных полей на компас измерителя исключается за счет установления истинного положения прибора при пересчете данных.

По выработанной в 2012—2013 гг. методике выполнены измерения скоростей течений на базовой станции BS (координаты 51.8216° с.ш., 104.9807° в.д.) и на четырех разрезах в ЮБ (рис. 1). Кроме того, на станциях получены вертикальные распределения гидрофизических характеристик водной толщи: температуры, электропроводности и прозрачности.

Кроме доплеровского профилографа, в 2013– 2014 гг. использовался измеритель течений "IN-FINITY-EM". Его дискретность измерений – 10 мин, а каждое значение скорости течения получалось путем осреднения десяти ежесекундных измерений. В основном он устанавливался на длительный период на станции BS.

Весной 2016 г. были проведены измерения с помощью "INFINITY-EM" вблизи ангарской полыньи. Промеры велись в верхнем стометровом слое на разрезе от безопасных мест около ангарской полыньи до внешнего края Лиственничного зал. (в 5 км от полыньи). По измерениям, на станциях разреза глубина озера достигала 1000 м, а толщина льда изменялась от 60 до 78 см.

Для расчета скорости геострофических течений использовались данные гидрофизических зондирований СТД-зондом "SBE-25". Выполнено 3 полуразреза от западного берега: у м. Березового, в районе Базового лагеря и у мыса Большой Кадильный. Станции располагались на расстоянии 1, 3, 5, 7 км от берега.

По вертикальным профилям температуры и минерализации с использованием пакета программ TEOS-2010 методом Мантгомери вычислялись геострофические функции, далее по этим функциям рассчитывались скорости течений. За глубину нулевой поверхности принята величина 200 м, которая примерно соответствует глубине залегания мезотермического максимума температуры.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ ПОДЛЕДНЫХ ТЕЧЕНИЙ В 2012-2016 гг.

Временная изменчивость скоростей течений в верхнем слое оз. Байкал

Динамика нарастания и разрушения ледового покрова зависит от теплового потока на границе вода—лед. В свою очередь, тепловой поток определяется интенсивностью вертикального обмена, который зависит от скорости течений в приповерхностном слое воды. Как показали измерения на базовой станции, скорость течений в приповерхностном слое воды (4—7 м) изменяются от 0.1 до 6 см/с (рис. 2).

Полученные данные позволяют рассмотреть вопрос о вертикальном распределении скоростей течений. Различие абсолютных значений скоростей по вертикали в основном незначительны и не превышают 1.5 см/с, иногда оно увеличивается до 2–3.5 см/с (рис. 2). При этом может наблюдаться как увеличение скоростей с глубиной, так и их уменьшение. 11 марта в 9 ч 58 мин наблюдалось увеличение скорости с глубиной, а в 20 ч 13 мин – уменьшение (рис. 3).

Причиной изменения течений может быть то, что базовая станция располагается в зоне влияния двух циркуляционных ячеек: а) общей циклонической циркуляции, охватывающей северную часть ЮБ от м. Березового до Селенгинского мелководья; б) антициклонической циркуляции Лиственничного зал. [7, 29]. Изменчивость скоростей и направлений течений может определяться смещением границ этих циркуляционных ячеек.

По данным INFINITY-EM с 18 января по 8 апреля 2013 г. проведено векторное осреднение подледных течений (табл. 1) по методике, описанной в [12]. В январе заметно влияние предледоставной циркуляции как по средним скоростям, так и по максимальной скорости. Затем скорости течений уменьшаются, сохраняясь в диапазоне 2—4 см/с в течение всей зимы.

Устойчивость течений (выраженная отношением $V_{\text{век}}/V_{\text{мод}}$) в январе повышена, что также указывает на влияние предледоставной циркуляции. В феврале устойчивость течений падает значительно, а в марте–апреле вновь увеличивается. Среднее направление течений показывает, что в течение всей зимы в месте наблюдений преобладала циркуляция Лиственничного зал.

Рис. 2. Модуль скорости течений на BS на разных горизонтах в 2012 г.: а – 5, б – 10, в – 20, г – 30, д – 40 м.

Рис. 3. Вертикальное распределение течений (а) и температуры (б) на BS 11 марта 2012 г.: *1* – в 9 ч 58 мин, *2* – в 20 ч 13 мин.

Месяц	V _{модуль} , см/с	$V_{\rm вектор},$ см/с	Направление, град	<i>V_{макс}, см/с</i>	Устойчивость течений	Скорость диссипации, 10 ⁻⁶ м ² /c ³
Январь	2.8	2.3	177	8.4	0.8	6.7
Февраль	2.1	1.1	179	3.4	0.5	7.1
Март	1.9	1.4	198	4.1	0.7	5.8
Апрель	2.1	1.6	152	3.9	0.8	4.2

Таблица 1. Среднемесячные характеристики течений и скорости диссипации турбулентной энергии. Базовая станция 2013 г.

Пространственная изменчивость подледных течений

Съемка профилографом участка ЮБ от пос. Култук до разреза м. Кадильный – пос. Мишиха проводилась 2 раза в последнюю декаду марта в 2012-2013 гг. В 2012 г. к этому времени сформировался эпилимнион толщиной 20-25 м. В 2013 г. на большей части акватории (за исключением западной части) эпилимнион был больше – до 45 м. У м. Кадильного температура в подледном слое повысилась до 1°С. Как известно из [21], вскрытие ЮБ начинается именно отсюда. В 2013 г. в связи с отсутствием снега у м. Березового температура воды в верхнем слоя озера достигала 0.8°С. На остальной части озера (а также у м. Березового в 2012 г.) температура эпилимниона была <0.4°С, при этом снежный покров в западной части ЮБ и у восточного берега достигал 20 см.

Скорости течения на большей части акватории озера невелики — 1–3 см/с. Усиление течений до

5–7 см/с происходит в верхней части термоклина (глубина 40–50 м – предельная для профилографа) в 7 км от берега, как и в безледный период. Направления течений в зонах усиления в основном соответствуют общей циклонической циркуляции (ЮЗ–З у западного берега и СВ–В у противоположного берега). У м. Березового заметно влияние антициклонической циркуляции Лиственничного зал., которая вызывает противотечения направлений ЮВ и В на некоторых станциях разреза м. Березовый – пос. Танхой и полуразреза на внешней части Лиственничного зал. (рис. 4).

В западной части акватории озера течения слабы, основная причина их уменьшения здесь полная заснеженность этой части озера и уменьшение неоднородностей прогрева.

Расчет геострофических течений у западного берега ЮБ показал, что они хорошо согласуются с данными по ADP и "INFINITTY-EM". Усиление течений происходит в верхней части термо-

Рис. 4. Течения, км/сут, в ЮБ в 2012 г. (размер стрелок соответствует линейке расстояний).

ВОДНЫЕ РЕСУРСЫ том 44 № 3 2017

Рис. 5. Направление, скорость течения и температура воды на разрезе вблизи истока р. Ангары.

клина на глубинах 50–80 м – на нижней границе диапазона измерений профилографа и ниже. Скорости течений в основном невелики – 2–4 см/с, у м. Кадильного – до 8 см/с.

Изменчивость подледного течения вблизи ангарской полыньи

Турбулентный режим в стратифицированном подледном пограничном слое океана под стационарно дрейфующим ледяным покровом рассмотрен в работе [19]. Полученные в ней результаты свидетельствуют о том, что стратификация способна сильно влиять на турбулентный режим подледного пограничного слоя. Отмечается сильная зависимость профилей скорости и турбулентного напряжения от стратификации. Так как при увеличении устойчивости бо́льшая часть кинетической энергии затрачивается на работу против сил плавучести, то уменьшается турбулентное трение между слоями и ограничивается передача количества движения между ними. При этом роль силы Кориолиса возрастает, и уже на сравнительно небольших глубинах (до 10 м) происходит значительный поворот течения и вектора тангенциального напряжения.

На рис. 5 для разных расстояний от истока Ангары приведены измеренные значения направления и скорости течений, а также температуры воды в верхнем стометровом слое.

Как известно из [16, 22], из Байкала в р. Ангару сливается слой вод, ограниченный снизу слоем скачка плотности. Ниже слоя скачка наблюдается течение, не связанное непосредственно со стоком в Ангару, оно обусловлено общей циркуляцией вод в Лиственничном зал., откуда берет начало Ангара. По данным [7, 29], это – антициклоническая циркуляция, которая проявляется в Лиственничном зал. во все сезоны года.

Подледное течение в верхнем слое вод озера у истока Ангары характеризуется двумя пограничными слоями: верхний формируется на нижней поверхности льда, а нижний — слой смешения на границе течения и слоя скачка плотности (слой градиента температуры). Приведенный анализ профилей скорости вблизи и вдали от ангарской полыныи показал наличие локального подповерхностного максимума скорости на всех профилях, что объясняется большой разностью скоростей течения на нижней поверхности льда и в р. Ангаре.

Измерения авторов статьи в 2016 г. показали, что верхний слой наблюдается лишь вблизи истока Ангары на расстояниях от полыньи от 0.25 до 2 км (изменение направления течения на глубинах 30—40 м; рис. 5). На внешней части залива вся масса воды выше и ниже слоя скачка движется в одном направлении (вертикали 4 и 5 км). В 3 км от полыньи режим течения малоустойчив.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ

Расчет коэффициентов горизонтального турбулентного обмена

По данным "INFINITTY-EM" за 2013 г. проведен расчет коэффициентов горизонтального турбулентного обмена для масштабов 1–12 ч, т.е. из рядов данных отфильтровывались данные до 1 ч и колебания свыше 12 ч.

Для оценки коэффициентов турбулентного обмена использовалась зависимость Колмогорова [17], из которой с помощью гипотезы "замороженной турбулентности" вычисляется характер-

Рис. 6. Среднесуточные модули скорости течения U_м на базовой станции и коэффициенты турбулентного обмена K_x, K_b

ный временной масштаб. Последний может быть определен различными способами. Для расчета был выбран метод Эртеля [5], основанный на предположении равенства коэффициентов обмена количества движения коэффициентам обмена веществом и отсутствия стратификации. Для уменьшения ошибок при вычислении коэффициентов обмена за счет случайных погрешностей пульсаций проводилось осреднение полученных коэффициентов с периодом осреднения 24 ч.

Расчеты проводились для широтной и долготной составляющих скорости течения, полученные коэффициенты обмена подо льдом озера на базовой станции — соответственно K_x , K_y изменялись от 0.01 до 1 м²/с, что согласуется с данными, полученными ранее для пелагиали [12].

Изменения коэффициентов горизонтального турбулентного обмена в течение зимы значительны. Изменение K_x , K_y во времени и изменения средней скорости течения хоть и имеют между собой связь, но как тенденцию (рис. 6). Изменения средней скорости течения имеют циклический характер. На рис. 6 прослеживается 6 долгопериодных циклов с периодами 10-12 сут. В изменениях K_x , K_y таких периодов нет, здесь можно выделить 3 больших цикла с периодами 20-25 сут.

Спектральный анализ подледных течений

Для определения вклада колебаний различных частот в общую энергию течений обычно используется функция спектральной плотности скорости течений [18, 25]. Существуют различные способы выборочной оценки функции спектральной плотности [4]. В данной работе использовались оценки, полученные с помощью быстрого преобразования Фурье по алгоритмам, заложенным в программе ORIGIN.

Данные о течениях по INFINITY разбивались на долготную (V_n) и широтную (V_e) составляющие по месяцам, и по каждому месяцу проводилась спектральная оценка течений. Для подавления колебаний с периодами >24 ч использовался фильтр Баттерворта.

На рис. 7 приведен пример такого спектра за январь 2013 г.

На спектрах течений выявлены: пики с периодами синоптическим (80 ч), суточным (24 ч), инерционным (15 ч), полусуточным (12 ч), на комбинированной частоте (7.5 ч), первая продольная сейша (4.6 ч) и вторая продольная сейша (2.5 ч), а также максимумы с периодом 2 и 3 ч.

Данные о максимумах спектральной плотности мощности в разные зимние месяцы приведены в табл. 2.

Основной вклад в общую энергию течений зимой вносят колебания с периодами 3–4 сут, соответствующими синоптическим колебаниям атмосферы (на рис. 7 этот пик искажен из-за влияния фильтра). Вторые по значимости колебания течений связаны с приливами (24 и 12 ч). Максимум инерционной частоты (15 ч) наблюдается в основном у широтной (V_e) составляющей течений. Колебания на частоте первой продольной сейши тоже встречаются чаще у широтной составляющей.

Иногда на спектрах имеется максимум на частоте 7–8 ч, что соответствует первому обертону инерционной частоты. По мнению Н.Н. Филатова [25], обертоны инерционной частоты суще-

Рис. 7. Спектры скоростей течений V_n за январь 2013 г. по долготной составляющей.

ствуют благодаря внутреннему трению в толще вод, в первую очередь — трению в слое скачка плотности, где обычно создаются большие горизонтальные напряжения сдвига. В более высокочастотной области иногда выделяются колебания на частоте второй продольной сейши и на комбинационных частотах, соответствующих периодам 2 и 3 ч.

Скорость диссипации турбулентной энергии

Скорость диссипации можно оценить различными методами. Один из методов основан на анализе зависимости коэффициента турбулентного обмена от масштаба явления. В теории локально-

Таблица 2. Максимумы на спектрах в 2013 г. (V_n – долготная, V_e – широтная составляющие; 1 – январь, 2 – февраль, 3 – март, 4 – апрель)

Период, ч	$V_n 1$	<i>V</i> _n 2	<i>V</i> _{<i>n</i>} 3	<i>V</i> _{<i>n</i>} 4	$V_e 1$	$V_e 2$	V_e3	V_e 4
80	+	+	+		+	+	+	
24	+	+	+	+	+	+	+	+
15	+				+	+	+	
12		+	+	+	+	+	+	
7.5	+	+		+			+	+
4.6				+	+	+	+	+
3		+	+		+			+
2.5	+	+	+		+		+	
2	+	+			+			+

изотропной турбулентности коэффициент пропорциональности c этой зависимости равен $c_1 \varepsilon^{1/3}$:

$$K_L = c_1 \varepsilon_1^{1/3} l^n, \tag{1}$$

по [18], $c_1 = 0.1$ для трехмерной турбулентности и $c_1 = 0.04 - для$ двумерной, при которых показатель степени *n* в зависимости (1) составляет 4/3 и 2 соответственно. Рассчитанная по этому методу скорость диссипации составляет от 5 × 10⁻⁷ до 3 × × 10⁻⁵ м² с⁻³. Среднемесячная скорость диссипации, рассчитанная по формуле (1), приведена в табл. 1.

По другому методу ε рассчитывается по спектральной плотности мощности течений [25, 28]. В инерционном интервале спектральная плотность мощности скорости S(k) зависит только от волнового числа k (рад/м) и скорости диссипации турбулентной кинетической энергии:

$$S(k) = \alpha_1 \varepsilon^{2/3} k^{-5/3},$$
 (2)

 $\alpha_1 = 1.56$ — трехмерная константа Колмогорова [30]. Для расчета по формуле (2) необходимо иметь спектр по волновым числам *S*(*k*), который для крупномасштабной области измерить трудно.

С помощью гипотезы Тейлора о "замороженной турбулентности" рассчитывают є по частотному спектру:

$$S(\omega) = \alpha_2 \varepsilon_2^{2/3} u^{-5/3} \omega^{-5/3}.$$
 (3)

В [25] показана применимость гипотезы Тейлора для озер. По спектру рассчитывают $S(\omega)$ для участка спада турбулентной энергии с $\omega^{-5/3}$ для временны́х масштабов, на которых выполняется

условие $S(\omega) \approx \omega^{-5/3}$. Коэффициент $\alpha_2 = 0.48$ [25]. Достаточно надежно определить ε можно лишь для участков спада энергии в мезомасштабной и высокочастотной областях спектра при соблюдении закона "-5/3".

Рассчитанная авторами статьи скорость диссипации турбулентной энергии по спектрам течений для верхнего слоя находится в пределах от 7×10^{-7} до 1×10^{-6} м² с⁻³, что соответствует оценкам, проведенным по формуле (1), но не согласуется с оценками в [12, 23, 28, 30], где скорость диссипации для подледных условий ниже на несколько порядков (10^{-12} – 10^{-10}). Объяснение этому видится в том, что "INFINITY-EM" — высокочувствительный прибор, даже подо льдом он всегда показывал скорости течений выше пороговых значений, в то время как в более ранних исследованиях недостаточная чувствительность приборов приводила к тому, что для \geq 50% наблюдений подо льдом точность была ниже этого порога.

Оценка структуры подледного пограничного слоя у истока р. Ангары

Вблизи ангарской полыньи. На вертикалях вблизи ангарской полыньи, на горизонтах <1 м, где наблюдается максимальная подледная скорость течений, вычисленное по толщине этого слоя число Рейнольдса $Re = 2.5 \times 10^3$. По вертикалям, расположенным на расстояниях 2, 1, 0.5 и 0.25 км от полыньи, получены следующие оценки значений подледных характеристик:

касательное напряжение $-1.17 \times 10^{-3} - 2.58 \times 10^{-3} \, \Gamma/(\text{см c}^2);$

динамическая скорость на нижней поверхности льда — 0.151—0.309 см/с.

Оценки показали, что абсолютные значения продольного градиента давления, вызванного стоком р. Ангары, — в диапазоне $1.36 \times 10^{-5} - 5.66 \times 10^{-5}$ г/(см² с²). Максимальные скорости течения потока составляют 2.17–3.29 см/с. Глубина максимальной скорости плотностного потока — 0.42–0.82 м.

Полученные значения продольного градиента давления примерно на порядок больше, чем в [2]. Это, видимо, связано с пониженным уровнем воды в оз. Байкал и с более гладкой нижней поверхностью ледяного покрова в весенний период.

Расчет характеристик пограничного слоя по данным авторов статьи показал, что он может быть описан уравнением Пуазейля [2, 24] как ламинарный плотностной поток.

Вдали от ангарской полыньи. Следует отметить, что на вертикалях в 4 и 5 км от полыньи наблюдается более размазанный (сглаженный) по вертикали профиль скорости, имеющий два локальных максимума. При удалении от полыньи верхний подледный локальный максимум на профилях скорости сглаживается, профиль скорости деформируется, а максимум скорости смещается на глубину 1–1.5 м. Нижний сглаженный максимум становится более выраженным, скорости на вертикалях, ближних к полынье, возрастают от 1–3 вблизи до 5–6 см/с вдали, а максимум смещается в глубину с 3–7 до 20 м на вертикали 5 км (рис. 5). По оценкам авторов статьи, вдали от ангарской полыньи профили скорости должны подчиняться логарифмическому закону вплоть до горизонта z = H, на котором скорость u(z) максимальна, т.е. $u(H) = u_{max}$.

Для описания вертикального распределения скорости в пограничном слое подледного течения вдали от полыньи использован закон дефекта скорости в следующем виде [2]:

$$\frac{u(z) - u_{\max}}{u_*} = -2.5 \ln \frac{H}{z + z_0}.$$
 (4)

На рис. 8 представлены результаты расчетов, показывающие хорошее соответствие измеренных подледных профилей скорости закону дефекта скорости вдали от ангарской полыньи. Аппроксимация профилей скоростей показала, что для подледного верхнего слоя оценка величины динамической скорости u_* равна 0.433 и 0.529 см/с для вертикалей 4 и 5 км соответственно. Для подледного нижнего слоя динамическая скорость равна 0.331 см/с и оценивалась по профилю скорости на вертикали 5 км с явно выраженным максимумом на глубине 19.5 м. Шероховатость нижней поверхности льда z_0 изменялась от 0.5 до 16 см.

выводы

В прибрежной зоне подо льдом течения малоинерционны. С наступлением ледостава устойчивые течения со скоростями порядка 10 см/с затухают в течение первых суток до приборного нуля (2 см/с). Иногда усиление ветра взламывает тонкий лед и генерация течений происходит вновь, но при повторном замерзании затухание течений также происходит достаточно быстро. В пелагиали озера предледоставная циркуляция сохраняется значительно дольше.

По результатам длительных наблюдений в верхнем и придонном слоях озера установлено, что режим течений с небольшими (1–2 см/с) средними скоростями устанавливается к концу февраля – началу марта. Это указывает на диссипацию энергии ветровых течений во всей водной толще озера за 1.5–2 мес. после ледостава. На следующем отрезке времени – с марта до вскрытия озера – атмосферное воздействие поддерживает относительно слабые течения в придонных и глубинных слоях с редкими случаями возрастания

Рис. 8. Распределение скоростей вдали от ангарской полыньи. Закон дефекта скорости – сплошная кривая; участки вертикальных профилей скорости, которые подчиняются логарифмическому закону на вертикалях 4 и 5 км, – кружки, треугольники и ромбы.

скорости течения до 4–6 см/с. В то же время в верхних слоях воды течения с конца марта заметно усиливаются под влиянием геострофической циркуляции, возникающей из-за разной степени подледного прогрева на участках озера с разной заснеженностью ледяного покрова.

Таким образом, можно констатировать, что в энергетике подледных течений, как и для безледного периода, важную роль играют атмосферные процессы. Основной вклад в общую энергию течений зимой вносят колебания с периодом 3-4 сут, что связано с прохождением циклонов и, как следствие, с образованием значительных (до 18 мб в подледный период) горизонтальных градиентов атмосферного давления по длине акватории озера. Определенный вклад в движение вод подо льдом могут вносить приливные колебания. Вклад инерционной составляющей существенен только в начале ледостава. Сейшевые колебания и сток рек оказывают незначительное влияние на подледные течения, за исключением отдельных районов озера.

При изучении стока байкальских вод в р. Ангару зимой 2016 г. проведена оценка структуры и характеристик пограничного слоя подледных течений у нижней поверхности льда на оз. Байкал вблизи истока р. Ангары. Вблизи полыньи структура подледного профиля скорости течений близка к структуре ламинарного плотностного потока, который может быть описан уравнением Пуазейля с продольным градиентом давления.

Вдали от полыньи (до 5 км) в Лиственичном зал. подледное течение формируется за счет влияния р. Ангары, для этой области характерен переход от ламинарного течения к турбулентному. Режим обтекания ледяного покрова на оз. Байкал можно считать близким к гидродинамически гладкому. Профили скорости соответствуют логарифмическому закону распределения.

Анализ натурных данных с применением описанных в настоящей работе методов позволил существенно расширить представления о крупномасштабной турбулентности и циркуляции вод озера в период, когда озеро покрыто льдом. Полученные в работе характеристики течений, коэффициенты турбулентного обмена и скорости диссипации турбулентной энергии могут применяться при разработке математических моделей динамики водных масс и процессов формирования качества воды оз. Байкал.

СПИСОК ЛИТЕРАТУРЫ

- Айнбунд М.М. Результаты натурных исследований течений в Южном Байкале // Тр. ГГИ. 1973. Вып. 203. С. 49–70.
- 2. Анисимова Е.П., Долгополова Е.Н., Сперанская А.А. Взаимодействие течения с нижней поверхностью льда // Вод. ресурсы. 2001. Т. 28. № 2. С. 229–233.
- Асламов И.А., Козлов В.В., Мизандронцев И.Б. и др. Оценка потока тепла на границе вода-лед на Байкале по экспериментальным данным // ДАН. 2014. Т. 457. № 4. С. 477–480.
- Белышев А.П., Клеванцов Ю.П., Рожков В.А. Вероятностный анализ морских течений. Л.: Гидрометеоиздат, 1983. 264 с.
- Верболов В.И. О коэффициентах горизонтального макротурбулентного обмена в прибрежной зоне Южного Байкала // Течения и диффузия вод Байкала. Л.: Наука, 1970. С. 122–131.
- Верболов В.И. Перенос вод и структура течений в прибрежной зоне Южного Байкала // Течения и диффузия вод Байкала. Л.: Наука, 1970. С. 45–68.
- 7. Верболов В.И. Течения и водообмен в Байкале // Вод. ресурсы. Т. 23. № 4. 1996. с. 413–423.
- *Гранин Н.Г.* Окольцованный Байкал // Наука из первых рук. 2009. № 3. С. 22–23.
- Гранин Н.Г., Гнатовский Р.Ю., Жданов А.А. Конвекция и перемешивание подо льдом озера Байкал // Сибирский экол. журн. 1999. № 6. С. 597–600.
- Гранин Н.Г., Джусон Д., Жданов А.А. и др. Турбулентное перемешивание вод озера Байкал в слое, непосредственно примыкающем ко льду, и его роль в развитии диатомовых водорослей // ДАН. 1999. Т. 366. № 6. С. 835–839.
- Гранин Н.Г., Козлов В.В., Цветова Е.А., Гнатовский Р.Ю. Полевые исследования и некоторые результаты численного моделирования кольцевой структуры на льду озера Байкал // ДАН. 2015. Т. 461. № 3. С. 343–347.
- Жданов А.А., Гранин Н.Г., Блинов В.В. и др. Горизонтальный макротурбулентный обмен и скорость диссипации турбулентной энергии в пелагиали озера Байкал // География и природные ресурсы. 2009. № 1. С. 55–60.
- 13. *Жданов А.А., Гранин Н.Г., Шимараев М.Н.* О механизмах генерации подледных течений в Байкале // ДАН. 2001. Т. 377. № 3. С. 392–395.
- 14. Жданов А.А., Гранин Н.Г., Шимараев М.Н. Подледные течения Байкала (на основе новых экспери-

ВОДНЫЕ РЕСУРСЫ том 44 № 3 2017

ментальных данных) // География и природные ресурсы. 2002. № 1. С. 79–83.

- Заворуев В.В., Левин Л.А., Гранин Н.Г. и др. Пространственно-временное распределение хлорофилла А в водах озера Байкал в зимний период // Гидробиол. журн. 1992. 28(1). С. 17–24.
- Маньковский В. И. Некоторые данные о динамике слива воды из Байкала в Ангару в зимний период // Тр. ЛИН СО АН СССР. 1964. Т. 5(25). С. 22–28.
- 17. *Монин А.С., Яглом А.М.* Статистическая гидромеханика. М.: Наука, 1965. Ч. 1. 640 с.; Ч. 2. 720 с.
- Озмидов Р.В. Горизонтальная турбулентность и турбулентный обмен в океане. М.: Наука, 1968. 200 с.
- Романов В.Ф. Турбулентный режим в стратифицированном подледном пограничном слое океана // Океанология. 1976. Т. XVI. Вып. 1. С. 32–39.
- Сокольников В.М. О течениях и температуре воды под ледяным покровом южной части Байкала и у истока р. Ангары // Тр. ЛИН СО АН СССР. 1960. Т. 18. С. 291–350.
- Сокольников В.М. Причины, обуславливающие образование пропарин ("ключей") в ледяном покрове Байкала // Тр. ЛИН СО АН СССР. 1959. Т. 17. С. 65–94.
- 22. Сокольников В.М. Течения и водообмен в Байкале // Тр. ЛИН СО АН СССР. 1964. Т. 5(25). С. 5–21.
- 23. Течения в Байкале / Под ред. Афанасьева А.Н., Верболова В.И. Новосибирск: Наука, 1977. 160 с.
- 24. Шлихтинг Г. Теория пограничного слоя / Под ред. Лойцянского Л.Г. М.: Наука, 1974. 712 с.
- 25. Филатов Н.Н. Динамика озер. Л.: Гидрометеоиздат, 1983. 165 с.
- Aslamov I.A., Kozlov V.V., Kirilin G.B. et al. Ice-water heat exchange during ice growth in Lake Baikal // J. Great Lakes Res. 2014. 40(3). P. 599–607.
- 27. *Kirillin, G.B. et al.* Physics of seasonally icecovered lakes: A rev. Aquat. // Sci. 2012. № 4. P. 659–682.
- Ravens T.M., Kocsis O., Wuest A., Granin N.G. Small-scale turbulence and vertical mixing in Lake Baikal // Limnol. and Oceanogr. 2000.T. 45. № 1. P. 159–173.
- 29. *Shimaraev M.N., Verbolov V.I., Granin N.G., Sherstyankin P.P.* Physical limnology of lake Baikal: a review // Baikal International Center for Ecological Research. Irkutsk, Okayama, 1994. 81 p.
- 30. Wuest A., Ravens T., Granin N. et al. Deep water renewal in lake Baikal-matching turbulent kinetic energy and internal cycling // Terra Nostra. 2000. № 9. P. 60–74.